
'lo AD-A237 285
REPORT DOCUMENTATION ADAA3 285n0public ponlng burdn for ths collecon of ntort=0nIS *lmald to Sv ago I hour Pa rmSPOnss. Includng 1 "' '

malntalning1hodlaneadod and completing and r tnglho coitcllIon of Information, Send comments regalding this burden estimate or any 01114t ( u t, ,. , ......... idiig
uggslonsroreducing this burdon, to Washington Headqualers Sorvice$, DeclorateforlnformationOperations and Reports, 1215JefforsonDals Highwav, Sute1204.Artirglon.VA222024302,

and to the Office of Management and Oudg ot, Paporwork Roductlon Project (07040188), Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2 REPORT DATE 3 REPORT TYPE AND DATES COVERED

May 1991 professional paper

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

DEDUCTION AND INFERENCE USING CONDITIONAL LOGIC In-house

AND PROBABILITY

6, AUTHOR(S)

P. G. CalabreseERF--,INGORGANIZATYONNAME(S)ANDADDRO

7. G AATON NE AND C 8. PERFORMING ORGANIZATION

Naval Ocean Systems Center JUN 2 " 1 REPORT NUMBER

San Diego, CA 92152-5000
9. SPONSORING/MONTORING AGENCY NAME(S) AND ADORESS ) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

Naval Ocean Systems Center
San Diego, CA 92152-5000

11, SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maimum 200 words) '
r- C1,

In contrast to the a thor's 1987 paper, wl lch p'esented an algebraic synthesis of conditional logic and conditional
probability starting with an 'nitial B bole n lgebra of poposipions, this paper starts with an initial probability space of
events and generates the ass ciat 1ro os ion as measurable indicator functions (h la the approach of B. De Finetti).
Conditional propositions are gener ed is earablyindicator functions restricted to subsets of positive probability
measure. The operations of and," "or, not, and given" are defined for arbitrary conditional propositions. The
representation of the resulting conditional event algebra as a 3-valued logic (always possible according to a new theorem due
to I. R. Goodman) is given in terms of 3-valued truth tables. Formulas for the conditional probability of complex conditional
propositions such as (q I p) v (si r) are proved. A second major theme of the paper concerns deductions in the realm of
conditional propositions. It turns out that there are varieties of logical deduction for conditional propositions depending on
the particular entailment relation ($) chosen. These relations are explored including their lattice properties and properties of
non-monotonicity. Computational spects for Artificial Intelligence are also discussed.

Published in Conditional Logic in Expert Systems by I. R. Goodman, H. T. Nguyen, M. M. Gupta, and G. S. Rogers, eds.
1991. North Holland Press.

14. SUBJECT TERMS 15. NUMBER OF PAGES

conditional propositions logic deduction
conditional events reasoning with uncertainty 10 PRICECOO

inference 3-valued logic conditional probability

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION I9. SECURITY CLASSIFICATION 20. UMITAION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAME AS PAPER

NSN 7540.01.280-15M Standltd ton M



UNtCLASSIFIED

21a NAME OF RESPONSIBLE INDIVIDUAL 21t) TELEPHONE (includeAreaCode) v21 Of CE ME ,I

P, G. Calabrese. (6 19) 553-4042 m ,1, -121

. . . . . . . . . . . . . . . .. ........ . .. .

NrN 7540 01 280 500 Iandail I,- ,0If

11N(CIASSIFIFII



In Conditional Logic in Expert Systems by I. R. Goodman, H. T. Nguyen, M. M. Gupta and G. S.
Rogers, eds. (accepted for publication in 1991 by North-Holland Press)

DEDUCTION AND INFERENCE

USING CONDITIONAL LOGIC AND PROBABILITY

Philip G. Calabrese

National Research Council Senior Research Associate
Naval Ocean System Center, Code 421
San Diego, California 92152

Abstract: In contrast to the autnor's 1987 paper, which presented
an algebraic synthesis of conditional logic and conditional probability
starting with an initial Boolean algebra of propositions, this paper
starts with an initial probability space of events and generates the
associated propositions as measurable indicator functions (. la the
approach of B. De Finetti). Conditional propositions are generated as
measurable indicator functions restricted to subsets of positive
probability measure. The operations of "and", "or", "not" and
"given" are defined for arbitrary conditional propositions. The
representation of the resulting conditional event algebra as a 3-
valued logic (always possible according to a new theorem due to I. R.
Goodman) is given in terms of 3-valued truth tables. Formulas for
the conditional probability of complex conditional propositions such
as (q/p) v (s/r) are proved. A second major theme of the paper
concerns deduction in the realm of conditional propositions. It turns
out that their are varieties of logical deduction for conditional
propositions depending on the particular entailment relation (< )
chosen. These relations are explored including their lattice
properties and properties of non-monotonicity. Computational
aspects for Artificial Intelligence are also discussed.

Keywords: Conditional propositions, conditional events, logic, reasoning with
uncertainty, 3-valued logic, conditional probability, deduction, inference

1. Introduction

Deep within the foundations of logic and probability, the architects and builders have left a

missing stone. Roughly, this foundation stone is to logical propositions what fractions are

to integers. Now, with the advent of the computer age, attempts to incorporate more of

human intelligence into machines (so-called artificial intelligence) have exposed this lack

of foundation and led compute: scientists to resort to sub-optimal methods to compute

actions from information via some "reasonable" data fusion algorithm. Hence there is no
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standard theory for combining information in the context of uncertainty. Among the

partially overlapping techniques there are:

a. The fuzzy sets and other fuzzy language modifiers and methods of L. Zadeh [5],

b. The belief functions of Dempster-Shafer [7], and

c. The probability logic approach of P. Calabrese [2] and [3].

The author will leave it to the many enthusiasts of fuzziness to crystallize the imprecise

and generally wasteful information combining techniques commonly -mpyIcyCd by .hc

common man as he commonly goes bumbling through life. This is not to say that we do not

need approximate methods by which to combine information in the face of the default of

logic and probability to provide more precise methods. Even though fuzzy methods tend to

distort information at least these methods come up with solutions, and often an exact

solution is not necessary. Nevertheless, science should continually seek to purge all

unnecessary natural language ambiguities from its formal mathematical descriptions, not

meekly incorporate theml A new theory should also, if possible, merge with the older

theory where the older is tested and applicable. That the fuzzy approach does not do. Before

one adopts a distorting technique, no matter how computationally tractable it may be, one

should first extend the classical theories of logic and probability as far as possible, and

secondly, merge with them on the boundary of their domain of application. However, except

for a few authors (for example, J. Pearl [6] and his important work in conditional

independence) this has not been attempted by the new generation of uncertainty workers in

so-called artificial intelligence. Instead, many researchers have publicly discounted the

practicality of probability theory as a method for reasoning with uncertainty - a nCt!in

that has prompted P. Cheeseman [4] to make a "defense of probability theory".

Another technique for reasoning with uncertainty is the belief function approach of

Dempster-Shafer [7] which, while striving to be consistent with probability theory,

addresses thp problem of determining the support for propositions arising from even

mutually inconsistent evidence.

The third approach to dealing with uncertainty is actually the oldest. G. Boole himself, the

father of the algebra of logic, was developing an algebra of logic and probability (see T.

Hailperin's cogent account [8]) but he died before completing the work. His unfinished

algebraic development was then abbreviated by his successors, who attached his name to the

resulting algebra.

In 1932, 1934 and later in 195G, S. Mazurkiewicz [9], [101 and 111] used A. TarsKi's

112], [13 1 new theory of algebraic logic to approach the problem of conditioning in an
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algebraic setting, but he did not get very far before his death. At the same time N.

Kolmogorov [28] was laying down his successful axiomatization of probability theory and

he realized that he could not follow logic in equating "if p then q" to "q or not p".

Already, in 1913, B. Russell and A. N. Whitehead [1] had made truth tables and so-called

material implication the standard form of implication in logic, and this worked fairly well

for 2-valued logic, but Kolmogorov found it to be inappropriate for probability theory. It

has also been known at least since 1975, [2] and [3], that the probability P(q v p') of the

material conditional is, in general, greater than the conditional probability P(qlp) of q

given p, unless either P(p) = 1 or P(qlp) = 1. Furthermore, if p = 0 then q v p' is certain

(=1) but P(qlp) is undefined. This telltale inadequacy of material implication for

representing "if - then - " has been noticed by generations of introductory logic students

who have questioned why "if p then q" should be true or "valid" in case p is false. This

question by pre-indoctrinated logic students has all too often been squelched by their

instructors, who blithely appealed to the assignment of exactly two truth values to show

that "if p then q" must be equivalent to "q or not p". Consequently if p is false then "not p"

is true, and so too is (q v p'), whatever the truth value of qI Thus (the argument goes) "if p

then q" is true (valid) when p is false.

Nevertheless, a good scientist does not include cases in his sample for which the premise of

his hypothesis is false; he does not count such cases as positive evidence of his hypothesis

irrespective of the truth of his conclusion. Nor does a scientist report the probability that

either the conclusion of his hypothesis is true or its premise false; rather, he reports the

conditional probability of the conclusion of his hypothesis given that its premise is true;

and so too must those who would consistently quantify the truth content of partially true

statements.

Besides this divergence between the treatments of "if - then -" in the domains of logic

versus probability, there also tends to be an inadequate distinction made in logic between

propositions that are partially true and propositions that are wholly true. Generally, in a

Boolean algebra a proposition need not be either true in all models (interpretaticns,

worlds) or false in all models; a proposition can be true in some and false in others, thus

allowing it to have a non-trivial probability. Nevertheless, the lack of a commonly

accepted algebraic context for both logic and probability has made the very meaning of the
"probability of a proposition" controversial. This is true in spite of the fact that G. Boole

[29], R. Carnap and R. C. Jeffrey [30] & [31], H. Gaifman [32], D. Scott and P. Kraus

[33], E. W. Adams [19], and T. Hailperin [8] have all defined the probability of a
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proposition as the probability of its extension set of models, i.e., the probability of the set

of models (interpretations, worlds) in which the proposition is true.

Others who have contributed to the expansion of probability logic that should be mentioned

include B. De Finetti [14], who first treated propositions as indicator functions from a

sample space to {0,1}; P. Rosenbloom [151, whose treatment of algebraic logic was very

influential to the author; G. Schay [16], who was probably the first person to define a

system of conditional propositions that included operations for combining propositions with

different premises; N. Rescher [17], whose monumental 1969 book Many Valued Logics

(still the standard in the field) included the 3 valued logic o 1. Sobocinski 118], wk,;,z.

turns out to be equivalent to the author's system less conditional conditionals; E. W. Adams

[19], whose operations are equivalent to those of Sobocinski; D. Dubois and H. Prade [20],

who have carefully reviewed the recent literature and contrasted the author's conditional

logic from that of I. R. Goxdman & H. T. Nguyen; and finally I. R. Goodman & H. T. Nguyen,

who upon reading an early (1986) manuscript of the author's 1987 paper, immediately

realized the crucial importance of conditional events, conducted a comprehensive historical

review concerning the problem of conditioning [21], and later contributed to the algebraic

foundations of conditionals, initiated new directions for research and discovered significant

new results [22]. (I would like to thank these colleagues for discovering the work of G.

Schay and B. Sobocinski, and for pointing out similarities between the author's system and

those of Schay, Sobocinski and Adams.)

The next section begins with a probability space and defines propositions (a la B. De Finetti

[14]) as indicator functions defined on the elementary set of occurrences of a probability

space. The meaning of a proposition being partially true or wholly true is defined in the

context of the algebraic logic of propositions (see, for instance, Chang and Keis'er [26].)

The probability of each proposition is then defined in terms of a probability measure on the

extensionally associated models (interpretations) that satisfy those propositions.

Conditional propositions (qlp), "q given p", are next defined as domain-restricted P-

measurable indicator functions which can be combined by "and", "or", "not" and "given"

resulting in another such conditional proposition. The resulting system of conditionals can

be represented as a 3-valued logic, as predicted by a recent theorem of I. R. Goodman [22,

and this book]. The third value does not represent uncertainty but rather inapplicability -

falseness of the premise of the conditional proposition. (Uncertainty is automatically

represented by non-atomic propositions, that thereby leave various possible facts

unspecified.) A new formula is given for the probability of the disjunction, (qlp) v (sir),

of two conditional expressions, thereby generalizing the well-known formula P(q v p)=
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P(q) + P(p) - P(q A p). A non-trivial formula for the conjunction of two conditionals is

also proved.

In the subsequent section on deduction, two types of dcduclion in a Boolean algebra are

distinguished. One of these types splits into four non-equivalent type- of dcduction in the

realm of conditionals resulting in at least five different kinds of deduction. These types of

deduction are characterized in terms of relationships between the original unconditioned

propositions.

2. Formal Development

Propositions, Probability Spaces and Indicator Functions: If P = (Q,BP) is a

probability space then the characteristic function of each P-measuraole subset B, B E B,

defines a unique P-measurable indicator function q: -Q -4 {0,1} from Q to the 2-element

Boolean Algebra {0,1} as fol!ows:

f 1 ,if co c B,q ~ o . ) =( 1 )

O, if (o c B'

q is a "proposition" in the sense that for each co e 0, either q is true for (o (i.e. q(co) = 1)

or q is false for (o (i.e. q(wo) = 0). Let L denote the set of all propositions of P.

Conversely, each r-measurable indicator function q defines a unique P-measurable subset

B, B c B by

B = q- 1(1) = {(o e Q: q(co) = 1}. (2)

B is the P-measurable subset on which q is true, and P(B) is the probability measure of

the partial truth of q, and so P(q) = P(q-l(1)).

In this correspondence between measurable subsets (probabilistic events) and measurable

indicator functions (propositions) the whole set Q corresponds to the unity indicator

function, to those propositions that are true in all 6) --- necessary & provable. The empty

set (D corresponds to the zero indicator function, to those propositions that are false in all W

--- impossible and contradictory.

Definition 1: Two propositions (indicator functions) p and q are equivalent if and only if

they are equal as functions. That is, p = q if and only if both p and q take the value 1 (or 0)
on the same subset of Q. Thus p = q if and only if p- 1 (1) = q- 1 (1) if and only if p-(o) =

q- 1 (0).
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Axioms of Boolean Algebra: A Boolean algebra, as formulated by T. Hailperin [8], is a

set of propositions L (including two constants 0 and 1) that is closed under the three

operations "and" (juxtaposition or A), "or" (v) and "not" (') and that satisfies these

axioms:

pq = qp, pvq = qvp, (3)

(pq)r = p(qr), (pv q) v r = pv (qv r),

(1)(p) = p, 0 vp =p,

(p)(p') = 0, pv p' 1,

p(qv r) = pqvpr, pv (qr) = (pv q)(pv r),

pp = p, p V p =p.

Conditional Propositions: In order to incorporate conditions, consider next that each

ordered pair, (BIA) of P-measurable subsets B, A in B with corresponding pairs (qlp) of

indicator functions q, p, defines a unique domain-restrcted P-measurable indicator

function (qlp): A -> {0,1} from A to the 2-element Boolean algebra as follows:

Definition 2:

S1, if o e (An B),

(qjp)(o) = 0,if o e (A n B'), (4)

undefined, if (o e A'

In terms of the unconditioned propositions p and q this is

(qlp)(0)) = { q(o), if p(o) = 1,
I undefined, if p((o) = 0. (5)

(qlp) is a "conditional proposition" in the sense that if p is true on o) then (qlp) is either

true on 0) or false on Co depending on the truth value of q. If p is false on o, we say that

(qlp) does not apply (i.e., is undefined) for wo. (qlp) is q, restricted to p-1 (1), the subset

on which p is true. The set of all conditional propositions of P will be denoted L/L.

Conversely, each such ordered pair of P-measurable indicator functions (qip) defines a

unique ordered pair, (BIA), of P-measurable subsets where A = p-1(1) and B = q 1(1). A

is the measurable subset on which p is true and B is the measurable subset on which q is

true. B n A is the measurable subset of A on which q is also true, and for non-zero P(A),

P(B n A) / P(A) is the conditional probability of q given p, denoted P(qlp).

Boolean Operations: The operations "or" (v), "and" (juxtaposition or A) and "not" (),

defined on the Boolean algebra (or sigma-algebra) 1B of events of P naturally generate
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operations on the indicator functions via disjunction, conjunction and negation in the 2-

element Boolean algebra {0,1} as follows:

(p v q)(o)) p(w) v q(o)), (6)

(pq)(w) = p( )q(co),

p,(o) = (p(co))'.

Here, the operations on the right hand side are in the 2-element Boolean algebra.

Note further that the first two operations can be expressed in terms of the minimum and

maximum functions on {0,1}:

p v q = max {p, q} (7)

pq = min {p, q}

Together with the Boolean axioms and truth assignments the set of propositions L forms a

Boolean logic, which will formally be denoted L.

In this framework each probabilistic outcome (o e Q is a model [26, pp. 1-2] of the

Boolean logic L because firstly, the axioms of the Boolean logic L are true in o and

secondly, o) assigns each proposition of L an unambiguous truth value of true or false.

The above approach to probability logic starts with a probability space P = (.. B, P) and

generates a Boolean algebra L of propositions, each proposition of which has a probability.

Another possible approach is to assume a probability measure on a given Boolean algebra of

propositions and thereby induce a probability measure on the models of that Boolean

algebra. Still another way is to assume a probability measure on the models of a given

Boolean algebra and induce a measure on the associated propositions. For the latter

approach see P. Calabrese [3].

Now it is known that not every Boolean algebra admits a probability measure P. Nor does

every s-algebra B admit a probability measure P. These pathological cases will not be

discussed here. Suffice it to say that if a Boolean algebra is finite or at least atomic then

there is no problem establishing a probability measure on it.

Equivalence of Conditional Propositions: Having defined conditional propositions as

indicator functions, the equivalence of two conditional propositions is easy to define:

Definition 3: Two conditional propositions (qlp) and (sir) are equivalent, i.e. (qlp) =

(sjr), if and only if they are equal as indicator functions, that is, if and only if they have

the same domain and are equal on this common domain.
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Theorem 1: Two conditionals (qlp) and (sir) are equivalent if and only if they have

equivalent premises and their conclusions are equivalent in conjunction with that premise.

That is, (qlp) = (sir) if and only if p = r and qp = sr.

Proof of Theorem 1: By definition (qlp) = (sir) iT and only it they are functionally

equal. The common domain of the indicator functions (qlp) and (sir) is p- 1(1) and r- 1(1).

So p = r. The subset of p- 1 (1) on which (qip) equals 1 is (q<1 (1)] [p- 1 (1)] = {w c Q

q(o) = 1 and p(() = 1} = {o) c Q: (qp)(Co) = 1} = (qp)-1 (1). Similarly, the subset of

r-1(1) on which (sir) is 1 is (sr)- 1 (1). Since these subsets are equal, qp = sr.

Conversely, if p = q and qp = sr then (qlp) and (sir) have the common domain p- 1 (1).

Furthermore, on p-1(1), which is also r-1(1), (qlp)(o)) = q(wo) = q(w) p(o)

(qp)(wo). Similarly, on r- 1 (1), (slr)(co) = (sr)(C ). But qp = sr. So (qlp) = (sir).

The equivalence class of conditional propositions containing the conditional proposition

(qlp) is {(sir) c L/L: (sir) = (qlp)} = {(sir): r = p and sr = qp} = {(slp): sp = qp}.

and may be denoted <qlp>, or when there is no ambiguity simply as (qip). This class or

coset of propositions is the set of all domain-restricted indicator functions which agree

with q on iiie subset p- 1(1), where p is has the value 1. The coset <pip> containing (PIP)

is just {(sjr) e L/L: (sir) = (PIP)} = {(sfp): sp = p}.

Note that the conditionals {(qJ0): q E LI form an equivalence class of wholly undefined

condilinls --- conditionals that have impossible premises. Note also that for every

conditional proposition (qlp), (qlp) = (qplp).

Definition 4: A conditional proposition (qlp) is said to be in reduced form if qp = p.

Note that if (qlp) is in reduced form, then P(qlp) = P(q)/P(p).

It is instructive to note that in general 2 events A, B (or propositions p, q) generate 22 = 4

nonempty atomic events {AB, AB', A'B, A'B'} and 24 = 16 non-equivalent subsets of these

atomic events, and 34 = 81 non-equivalent conditional events (conditional propositions) -

-- all from just two initial binary variablesl (For a proof that the number of non-

equivalent conditionals is 3 N, where N is the number of atomic events, see [31, p. 225.)

Starting with 4 propositions, 216 = 65,536 non-equivalent propositions and 316

43,046,721 non-equivalent conditional propositions may be generated!

Operating with Undefined Conditionals: The Boolean operations can be extended in

various ways to the domain-restricted indicator functions (i.e. to the conditional

propositions) depending upon how one regards the effect of undefined conditionals in

combination with defined conditionals.
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in this paper a conditional that is undefined for a particular o) will (for that (,)) have no

effect upon any other conditional with which it may be disjoined or conjoined or which it
may condition. That is, if (slr)(w) is undefined then (slr)(,) acts like an operational

identity with respect to disjunction, conjunction and when acting as a premise.

Furthermore, when acting as a conclusion, such a conditional results in an undefined

conditional no matter what the premise. This corresponds to the usual way people handle

inapplicable conditionals in practice. These assumptions can be expressed succinctly as

follows:

Axioms of Conditional Probability Logic: Let c be an arbitrary conditional

proposition and let d be a conditional proposition that is undefined on (,), i.e., d = (sir)

where r(o) = 0:

(d(o)) = d(w) (8)

c(o) v d(O)) = c(co)

c(o) d(o) = c(o)

c()) d(w) = c(CO)

d(o)) c(o) = d(w)

With this understanding, (also see Dubois & Prade [20]), the extensions of the three

operations to conditionals takes the following natural functional form:

Definition 5: For arbitrary conditionals (qlp) and (sir),

[(qlp) v (slr)](wo) = (qlp)(co) v (sir)(o ) (9)
[(qlp) A (slr)](0 ) = [(qfp)(o))J A [(slr)(o))]

[(qIp)'](o ) = ((qlp)(ow))'

Theorem 2: in terms of a single conditional of the original propositions q, p, s, and r,

these three operations become:

(qlp) v (sir) (qp v sr) I (P v r) (10)

(qlp)(slr) = [(q v p')(s v r') I (p v r)

(qIp) = (q'lp)

Proof of Theorem 2: The result follows by using the equations 4, 5 and 9 to express

(qlp)(o)) and (sir)(o)) in terms of the original unconditioned propositions q, p, s, & r, and

then collecting cases. For instance, the formula for disjunction goes as follows:

[(qlp) v (slr)](o)i = (qlp)(wo) v (slr)(ow) (11)

9



r (qiP)(() v (slr)(o ), if (qlp)(w,)) and (slr)(o,) are defined,
(qlp)((,)). if (slr)((o) is undefined, (12)
(slr)((o), if (qlp)(o)) is undefined

q(o)) v s((o), if p(o)) 1 and r((,)) = 1,
=1 q(o), if p((o) = 1 and r((,)) = 0,

s((o), if p(0o) = 0 and r(u)) = 1,
undefined, if P((o,) = 0 and r(o)) = 0

f (qp)((o) v (sr)(co), if p((o) = 1 or r((,) = 1,
undefined, if Po) = 0 and r(o,)) = 0 (14)

= (qp v sr)(o), if (p v r)(()) = 1,

undefined, if (p v r)(o)) = 0 (15)

- [(qp v sr) I (p v r)](o). (16)

Note, for instance, that if (slr)(o) is undefined, i.e. when r(o)) = 0, then

(qtp)(o) v (slr)(wD) = (qlp)(co).

With the operations of "and" (juxtaposition or A), "or" (v) and "not" (') the set L/L of

ordered pairs (qip) of propositions includes an isomorphic copy of the original Boolean

algebra of propositions according to the identification

(pll) --) p, (17)

and for any fixed non-zero proposition p, the conditionals ((qlp): all q e L} form a Boolean

algebra, which will be denoted L/p. But it is not true that as a whole L/L together with

these three operations forms a Boolean algebra. More on this later.

While the above formula for the disjunction (v) of two conditionals is given in reduced

form, the formulas for the other two operations are not. In reduced form these other two

become

(qlp)(slr) = (qpr' v p'sr v qpsr) I (p v r) (18)
(qIp)' (q'p I p)

De Morgan's Laws for Conditionals: It is interesting to note that De Morgan's

formulas have a counterpart here:

Theorem 3: [(qlp) v (sir)]' = (qlp)' A (sir)' (19)

[(qIP) A (sIr)]' = (qIp)' v (sir)'

10



Proof of Theorem 3: [(qlp) v (sir)]' = [(qp v sr) I (p v r)]' = (qp v sr)' I (p v r)

= (qp)'(sr)' I (p v r) - (q' v p')(s' v r')I (p v r) = (q'lp) A (s'ir) - (qlP)' A (sir)'

using that (p')' = p. That proves the first formula. Using the first formula the dual

formula follows: [(qlp) A (sir)]' = [(q'lp)' A (s'lr)']' = [[(q'lp) v (s'lr)]']' =

(q'ip) v (s'lr) = (qIp)' v (sir)'.

With respect to priority of operations, when parentheses are omitted, negation (') takes

precedence and then conjunction (juxtaposition or A) and then disjunction (v) and then

conditioning ( I ). Thus (sr I q v p') means (sr) I (q v (p')).

The Conditional Closure: To obtain closure of operations in !JL, the conditioning

process must be extended to the ordered pairs themselves --- to conditional conditionals.

These are of the form (qlP) i (sir). [Those of the mixed forms, ((qlp) I s) and (q I (sir))

for propositions q, p, s, and r, can be expressed as (qlp) I (sil) and (qil) I (sir)

respectively.]

Definition 6: For arbitrary conditionals (qlp) and (sir), define

[(qlp) I (sir)](e)) = (qlp)(o ) I (slr)(o) (20)

The following result reduces a conditional conditional to a single conditional of the original

propositions.

Theorem 4: For arbitrary conditionals (qlp) and (sir)

(qIp) I (sir) = q I (p (s v r')). (21)

Proof of Theorem 4: As with the proof of the other operations above, the result follows

by using the definition of (qlp)(w) to express (qlp)((o) and (slr)(co) in terms of the

original unconditioned propositions q, p, s, & r, and then collecting and rephrasing the

cases:

[(qlp) I (sir)]((o) (qlp)((o), if (slr)(w ) 0, (22)

undefined, if (slr)(o) = 0

(qp)( o), if (sir)(o) = 1,
(qIp)(o)), if (sJr)(o) is undefined, (23)

undefined, if (slr)(w) = 0

(qlp)(co), if s()) = 1 and r(w) = 1,

(qlp)(0)), if r(o)) = 0, (24)

undefined, if s(o)) = 0 and r((o) = 1
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(qlp)((o), if s(w) v r'((o) = 1, (25)undefined, if s(o)) v r'(c) = 0

(qlp)((o), if (s v r')(o) = 1, (26)

undefined, ii (s v r')(co) = 0

q(co), if [p(s v r')](o)) = 1, (27)
undefined, if [p(s v r')](W) = 0

[q I p(s v r')](o). (28)

Note that when the premise conditional (sir) is undefined (i.e. r = 0) it has no effect on the

conclusion conditional (qlp).

Corollary to Theorem 4: Applying the above theorem to the mixed form cases

mentioned above yields:

((qlp) I s) = (q ps) (29)

(q I (sir)) = (q (s v r'))

Note that as a condition (sir) is equivalent to (q v p').

The collection L/L of all conditional propositions under the four operations "and"

(juxtaposition or A), "or" (v), "not" (') and "given" ( I ) forms a closed system that the

author has called the conditional closure of the Boolean logic L . The conditional closure

will formally be denoted L/L.

Since L/L is closed, compound conditional expressions can be reduced to simple

conditionals of Boolean functions, which have well-defined conditional probabilities.

Truth Value Representation: The above development can be expressed in terms of 3-

valued truth tables for conditional propositions (or restricted indicator functions). That

is, for any fixed ,o e Q, a conditional proposition is either true (1), or false (0) or

undefined (U). This contrasts from the 2-valued propositions that arise from the

characteristic functions of the ,,arious events in B. These 2-valued propositions are either

true in o) or false in o and always defined in o.

Note that a particular conditional proposition may be true in some co, false in other (0 and

undefined in still other co. It is not accurate (except in a categorical Boolean algebra) to

say without regard to a particular (o that each conditional proposition (qlp) is either true,

false or undefined.
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Note also that the third truth value is designated U for "undefined" not U for "uncertain".

Perhaps this value is best expressed as "inapplicable". It is not a value between 0 and 1; it

is a completely separate value.

The truth tables for the operations on conditional propositions (qlp) and (sir) easily follow

by considering all possible assignments of T, F, and U (1, 0 and Undefined) to the initial

propositions and then applying the operations on conditionals:

(slr)(o) (sir)(
AND T F U OR I T F U

T IT F T T I T T T

(qlp)(co) F I F F F (qlp)((o) F I T F F
U T F U U T F U

(slr)(o)

NOT IT F U
GIVEN I T F U

IF T U T I T U T

(qlp)(co) F I F U F

U I U U U

It can be seen that with an appropriate extension of the functions max and min to include the

additional domain value U, "or" corresponds to max, and "and" corresponds to min.

Algebraic Properties of L/L: While L/L contains many Boolean algebras, it is not

itself a Boolean algebra. In particular, L/L is not wholly distributive. Nor does it in

general have absolute complements. Furthermore there are no absolute units except the

wholly undefined conditional (110). For instance, (qlp) A 1 = q v p' : (qlp) unless p = 1.

For an elaboration on these matters see [3], p. 226-7.

Another interesting algebraic consequence of the conditional closure operations in L/L is

"non-monotonicity" [34]. Unlike the situation in a Boolean algebra, it is not true that the

disjunction of two statements is necessarily entailed by each of the two component

statements. If this seems strange consider the following example of a compound conditional:

"If the store has Pepsi then buy Pepsi or if the store doesn't have Pepsi then buy Coke" The

intent of the compound statement is to impose a double constraint. That is, if the store has

Pepsi then I need only buy Pepsi for the compound conditional to be true. But if the store

13



doesn't have Pepsi and does have Coke then the Coke must be bought to satisfy the compound

conditional. Without the conditional about Coke I would only need to purchase Pepsi if the

store has it for the statement to be true, nothing being said in case of no Pepsi at the store.

Thus the disjunction of two conditionals (with mutually inconsistent premises) is false

when I fail to satisfy each separate conditional when it applies.

It turns out that when the premises of two conditionals are disjoint it doesn't matter

whether the conditionals are disjoined or conjoined! The result is the same in English and

in the conditional closure algebra. More on this later.

Probability in L/L: Since complex conditional expressions can be reduced in L/L to a

single conditional of Boolean expressions, they all have an implied conditional probability.

For the disjunction of any two conditional propositions (qlp) and (sir), the probability can

be determined according to the following formula:

Theorem 5: For any conditional propositions (qlp) and (sjr), P(p) f 0 * P(r),

P((qlp) v (sir)) = P(p I p v r) P(qlp) + P(r I p v r) P(sr) - P(qpsr I p v r)

Note that for p = r, this reduces to the ordinary probability of a disjunction.

Proof of Theorem 5: P((qlp) v (sir)) = P(qp v sr I p v r)

=P(qPlpv r) + P(srlpv r) - P(qpsrIpv r)

=P((qlp) I p v r) P(p ip v r) + P((slr) I p v r) P(r p v r) - P(qpsr p v r)

=P(q I p(p v r)) P(p p v r) + P(s I r(pv r)) P(r p v r) - P(qpsr p v r)

= P(qlp) P(p I p v r) + P(sir) P(r p v r) - P(qpsr I p v r).

There is also a non-trivial formula for P((qlp) A (sir)):

Theorem 6: Under the hypothesis of the preceding theorem,

P((qlp) A (sir)) = P(p I p v r) P(qr'lp) + P(r I p v r) P(sp'lr) + P(qpsr I p v r).

Proof of Theorem 6: P((qlp) A (sir)) = P(qpr' v srp' v qpsr I p v r)

= P(qpr' I p v r) + P(srp' I p v r) + P(qpsrlpv r)

= P(p p v r) P((qr'Ip)I(p v r)) + P(r I p v r) P((sp'lr)l(p v r)) + P(qpsr I p v r)

= P(p I p v r) P(qr'l p(p v r)) + P(r I p v r)P(sp'l r(p v r)) + P(qpsrl p v r)

= P(p p v r) P(qr'lp) + P(r I p v r) P(sp'lr) + P(qpsr I p v r).

Note that the last term of the formulas of the last two theorems, namely P(qpsr I p v r),

can be expressed as P(pr I p v r) P(qs I pr).
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In view of the very large sample spaces associated with even a small number of variables,

it is not practical to attempt to enumerate possibilities and calculate probabilities and

conditional probabilities from scratch. Formulas like those of Theorems 5 and 6 allowing

local calculation of conditional probabilities via partitions are essential for practical

determination of conditional probabilities in artificial intelligence applications.

3. Varieties of Deduction

Deduction in L. In a Boolean algebra L, one proposition may (necessarily) imply a

second proposition. In the simplest case the truth of a proposition such ;; (n v 1) is

implied by the Boolean algebra axioms, which of course, are true in all models c) of L. For

instance the truth of (p v 1) follows from the laws of complements, associativity and

idempotency: p v 1 = p v (pv p') = (pv p) v p' = pv p' = 1. In terms of indicator

functions, (p v 1)(co) = 1 for all o e Q. That is, (p v 1) is the unity function on .Q. The

truth of (p v 1) can also be expressed using the following familiar partial ordering on L.

Definition 7: p < q if and only if pq = p.

With this definition it is easy to show the following equivalent form:

p q if and only if pvq=q. (30)

If p < q holds, we say p entails (necessarily implies) q. In terms of < the fact that (p v 1)

is always true (= 1) can be expressed as 1 < (p v 1) and (p v 1) < 1. In this way axioms

and theorems of the form p = q can all be expressed in terms of <

p=q if andonly if p!q and q<p. (31)

In terms of indicator functions, (p < q) is just functional inequality in the 2-element

Boolean algebra. That is, (p < q) means p(co) < q(co), for all co e 2, where 0 < 1. Note

that if p < q then easily q' < p' and for any proposition r, pr < qr and (p v r) < (q v r).

The converses are also true. In addition p < q if and only if p(' = 0.

Besides the two equivalent forms given above expressing "p entails q", there are at least
two other ways to express p < q:

p q if and only if qv p'= 1 (32)
and

p < q if and only if (qlp) = (lip) (33)

The first statement follows because if p < q then q = p v q. So q v p' = (p v q) v p' = 1.

Conversely, if q v p' = 1 then (q v p')p = (1)(p). So qp v p'p = p. Thus qp = p. So p _ q.
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The second statement follows because if p _< q then pq = p. So (qlp) = (qplp) = (PIP) =

(lip). Conversely, if (qtp) = (lip) then qp = (p)(1). That is, qp = p. So q < p.

According to the definition of equivalent conditionals, the proposition q is equivalent to p in

the Boolean algebra L/p if and only if (qlp) = (pip), that is, if and only if qp = p, which is

just p q. Thus, in L/p, q is equivalent to p if and only if q is entailed by p. We say that q

is in the equivalence class generated by p. In other terminology, q is said to be in the filter

class generated by p or in the sum ideal generated by p. This is the equivalence class <pip>
= {q e L: p < q}. Thus, still another way to express "p entails q" is to say that q is in the

sum ideal generated by p.

Deduction in L/L: Unlike the situation existing in L it is not true that the following two

potential definitions for entailment are equivalent in L/L:

Definition 8 (Conjunctive Implication): (qlp) conjunctively implies (sir),

denoted (qlp) -<^ (sir), if and only if (qlp) A (sir) = (qlp). That is,

(qlp) A (sir) if and only if (qlP) A (sir) = (qlp)

Definition 9 (Disjunctive Implication): (qlp) disjunctively implies (sir),

denoted (qlp) <v (sir), if and only if (qlp) v (sir) = (sir). That is,

(qlp) <.v (sir) if and only if (qlp) v (sir) = (sir)

In fact if the properties of both definitions hold then, as will be shown below, p = r and qp

< sr. Thus the situation reduces to the special case of equal premises, i.e., q < s on the

subset on which p (and r) are true.

In this restricted context of equivalent premises, p and r, there are various equivalent

ways to express "(qlp) entails (sip)" including: (qlp) <  (sip), (qlp) < , (sip), (qlp)' v
(sip) = (lip), and (slp)l(qlp) = li(qip). These are all equivalent to the statement qp <

sp. Yet another way to express this is (sip) e <qlp>, that (sip) is in the filter class (sum

ideal) generated by (qlp). Each of these facts follow in a few steps. Yet it turns out that

none of the first four relations are equivalent when the premises of the conditionals are not

equivalentl

While <^ and <v, are not equivalent in L/L, they do both constitute partial orderings:

Theorem 7: Both <^ and < v establish partial orderings on LIL.
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Proof of Theorem 7: The proof follows by routine application of the operations to show
reflexivity, antisymmetry and transitivity. For example, reflexivity of <_^ follows from

(qip) A (qlp) = (q v p')(q v p')] I (p v p) = [(q v p') I p] = [(qp v p'p) I p]

[(qp v 0) Ip1 = (qplp) = (qip).

The following two theorems express the inequalities (qlp) <A (sir) and (qlp) <!, (sir) in

terms of the partial ordering on the original propositions.

Theorem 8: (qlp) <A (sir) if and only if r < p and qp < sr v r'.

Corollary to Theorem 8: (qlp) <^ (sir) if and only if r < p and qr < sr.

Theorem 9: (qlp) <v (sir) if and only if p < r and qp < sr.

Corollary to Theorem 9: (qlp) <v (sir) if and only if p < r and qp < sp

Proof of Theorem 8: Suppose (qlp) <^ (sir). Therefore (qlp)(slr) = (qlp). Then

(qpr' v p'sr v qpsr I p v r) = (qlp) = (qplp). So p v r = p and qpr v p'sr v qpsr =

qp. From p v r = p it follows that r < p. So rp' = 0. Combining these results yields qp =

qpr' v p'sr v qpsr = qpr' v 0 v qps = qp(r' v s) = qp(r' v sr). Thus qp < (sr v r').

Conversely, if (r p) and (qp < sr v r'), then qp = qp(r' v sr) = qpr' v qpsr =

qpr' v 0 v qpsr = qpr' v p'sr v qpsr. Therefore (qlp) = (qplp) = (qp I p v r) =

(qpr' v p'sr v qpsr I p v r) = (qlp)(slr).

To prove the Corollary to Theorem 8, note that if (r < p) and (qp < sr v r'), then qpr _

(sr v r')r. So qr _ sr. Conversely, if (r < p) and (qr < sr), then qrp < srp = sr. So qp =

qpr v qpr' < sr v qpr' < sr v r'.

Proof of Theorem 9: Suppose (qlp) <., (sir). That is, (qlp) v (sir) = (sir).

Therefore (qp v srIpv r) = (sir) = (srir). So,pv r=r and qpv sr=sr. Sop<r

and qp sr. Conversely, it p r and qp < sr, then p v r = r and qp v sr = sr. So (sir)

= (stir) = (qp v sr I p v r) = (qlp) v (sir). That is, (qlp) <!v (sir).

To prove the corollary to Theorem 9 note that if p < r and qp _< sr then qpp < srp = sp. So

qp < sp. Conversely, if qp < sp and p < r then qp < sp < sr.

Note that as a consequence of Theorem 8 it turns out that (q v p') <A (qlP) since p < 1 and

(q v p')p < qp.

Non-Monotonicity of Deduction: As appealing as this definition of entailment seems,
it nevertheless appears at first to have a serious flaw, namely: If (qlp) <A (sir) then it
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does not follow that P(qlp) - P(sjr). This issue was brought to the attention of the author

by H. T. Nguven and it also appears in Dubo's and Prade [20], both suggesting that a

deduction relation is inappropriate as an entailment relation in LI.L unless it is monotonic

in the sense that if (qlp) entails (sir) then P(qlp) should riot be greater than P(slr). But

<^ does not satisfy this relation:

For example, let p = 1, P(q) = 1/2, r = q' and s = q. Then easily (qlp) 5, (sir) but

P(qlp) = 1/2 while P(sir) = 0. In fact, (q v p') <_ (qlp) but it was shown earlier that

P(qjp) - P(q v p'), not the other way around. Nevertheless, in thinking about conditional

logic and probability one must be flexible with one's conclusions. One must be "non-

monotonic" in one's thinking! It might at first seem obvious that (qlp) <^ (sir) should

imply P(qlp) <- P(sjr). The idea comes swiftly to the mind and just as quickly to the

tongue, but is it really so reasonable as a general rule?

Upon second thought, it seems to the author to be rather questionable whether one should

insist that whenever one conditional (with its own premise and probability of application)

entails a second conditional (with its own premise and probability of application) then

their conditional probabilities must be so ordered. Rather, in the propagation of

conditional probabilities through a network of logically related conditional propositions,

one must perhaps allow for increasing or decreasing conditional probabilities. A similar
observation can be made for -<v. For instance let 0 < P(q) < 1. Then (qlq) <!v (qll), i.e.,

(qlq) disjunctively implies (q1l) because q _ 1 and qq < (q)1. However P(qll) = P(q) < 1

= P(qlq).

In its initial formulation non-mono tonicity [34] arises from the observation in

probability theory that P(q I P A r ) can be less, more or equal to P(qlp) even though p A r

entails p. The lack of monotonicity of _ A is also well exhibited by considering the two forms

(qlp) and (q v p'). As shown earlier P(qlp) <- P(q v p'), but it is also true that (q v p') _<^

(qlp). On the other hand it is also easy to show that (qlp) <. v (q v p').

Nevertheless, if (qlp) -A (sir) then it has been shown that qp _ sr v r'. That is, whenever

(qlp) is true then either (sir) is true or else r is false. It will later be shown that if (qlp)
-<A (sir) then (q v p') _ (s v r') and so P(qlp) - P(q v p') < P(sr v r'). That is, if (qlp)

-<A (sir) then P(qlp) <  P(sr v r').

On the other hand, it is not even true in general that if (qlp) <v (sir) then P(qlp) <

P(sr v r'). For instance, let 0 * q = p _< s 1 = r. So (qlp) <.v (sir). However P(qlp) =

1 > P(sr v r') = P(s).
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In addition to <A and <v there are at least two other candidates for expressing the notion

that an arbitrary conditional (qlp) entails a second arbitrary conditional (sir). The

following two definitions formalize these relations:

Definition 10 (Conditional Implication): (qlp) conditionally implies (sir),

denoted (qlp) c (sir), if and only if (sir) is true given (qlp). That is,

(qlp) c (sir) if and only if (slr)l(qlp) = (1lr)l(qlp).

Definition 11 (Material Implication): (qlp) materially implies (sir), denoted

(qlp) <m (sir), if and only if either (sir) is true or (qlp) is false. That is,

(qlp) -<m (sir) if and only if (sir) v (qp)' = (1 I r v p).

The following theorems express these equations in terms of the partial ordering < on the

original propositions.

Theorem 10: (qlp) conditionally implies (sir), that is, (slr)l(qlp) = (llr)l(qlp) if

and only if any one of the following hold:

r (q v p') < s,

(q v p') < (s v r'),

rs'< pq'.

This theorem gives three equivalent ways of expressing the equation (slr)l(qlp) =

(1lr)i(qjp), that (qlp) conditionally implies (sir): r(q v p') < s means that if the

premise r of the conclusion is true and the premise conditional, (qlp), is not false then the

conclusion s is true. q v p' s v r' means if the premise conditional is not false then the

conclusion conditional is not false. rs' < pq' means that if the conclusion conditional is false

then the premise conditional is false.)

Proof of Theorem 10: Suppose (qlp) c (sir). Then (slr)j(qip) = [s I r(q v p')] and

(lr)i(qjp) = [1 I r(q v p')]. So sr(q v p') = r(q v p'). Therefore r(q v p') < s. By

reversing the steps the converse follows. The 2nd and 3rd relations of Theorem 10 follow

since r(q v p') < s if and only if r(q v p')s' = 0 if and only if rs' < (q v p')' = pq'. In

addition, r(q v p')s' = 0 if and only if (q v p') < (rs')' = (s v r').

Here again conditional implication ( <c) is non-monotonic in the sense that (qlp) c (sir)

does not imply P(qlp) < P(sjr). For instance, let p = 1, s = q, and r = q' with 0 < P(q) < 1.

Then (qlp) c (sir) since q v p' = q and s v r' = q. But P(qlp) = P(q) > 0 = P(sr).
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For <c it is true that both (qlp) c (q v p') and (q v p') c (qlP) but clearly, (qlp) ,

(q v p'). Two propositions may conditionally imply each other without being equivalent.

Nevertheless, as is so for both <A and m, if (qlp) c (sir) then P(qlp) < P(sr v r'). That

is, if (qlp) c (sir) then the probability that (qlp) is true is less than or equal to the

probability that (sir) is true or undefined.

The following theorem and its corollaries give three equivalent ways to express that (qlp)

materially implies (sir), i.e., that (qlp) <m (sir).

Theorem 11: (sir) v (qlp)' = (1 1 r v p) if and only if

qp sr and r(qv p') s.

Proof of Theorem 11: (sir) v (qlp)' = (1 I r v p) if and only if (sr v q'p r v p) =

(1 r v p) if and only if sr v q'p = r v p. Multiplying the last equation by qp yields srqp

= rqp v qp = qp. So qp sr. Furthermore, multiplying the equation sr v q'p = r v p by

s'r yields 0 v q'ps'r = s'r v ps'r = s'r. So s'r q'p. So s'r(q'p)' = 0. So s'r(q v p') = 0.

Therefore r(q v p') < s. That completes one direction of the proof. Conversely, if qp <- sr

and r(q v p') < s, then s'r(q v p') = 0. That is, s'r < (q v p')' = q'p. So qp < sr and s': <

q'p. therefore, sr v q'p = (sr v qp) v (q'p v s'r) = (qp v q'p) v (sr v s'r) = p v r. So

sr v q'p = r v p. This completes the proof of Theorem 11.

As before the second inequality can be expressed in several ways:

Corollary to Theorem 11: (sir) v (qlp)' = (1 1 r v p) if and only if either of the
following hold:

qp sr and (qv p') < (sv r'),

qp sr and rs' < pq'.

Clearly from the last two theorems, the statement "(sir) is true given (qlp) is true"

(conditional implication) is weaker than the statement that "either (sir) is true or (qlp)

is false" (material implication).

It is important here as before to determine whether (qlp) <m (sir) implies P(qlp) <

P(slr). It was I. R. Goodman [221 who first proved this result as well as its more difficult

converse; H. Prade & D Dubois [201 have also made this observation. The following proof is

offered without the requirement of atomicity of the Boolean Algebra L.

Theorem 12: Let a, b, c, and d be four propositions of L. If P(alb) P(cld) for every

probability measure P on L for which P(b) ?t 0 # P(d) then either (alb) -<m (cid) or
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(ab = 0) or (d _< c). Conversely, if either (alb) - m (cid) or (ab = 0) or (d <_ c) in L/L

then P(alb) < P(cld).

Proof of Theorem 12: Prove the converse first: If (ab = 0) or (d c) then easily

P(alb) < P(cld) since either P(alb) = 0 o, P(cld) = 1. Otherwise, ab _ cd and c'd _ a'b.

Then P(alb) = P(ab)/P(b) = P(ab)/[P(ab) + P(a'b)] = 1/[1 4 P(a'b)/P(ab)]

1/[1 + P(c'd)/P(cd)] - P(cd)/[P(cd) + P(c'd)] = P(cid), which proves the converse.

Now suppose that neither (ab = 0) nor (d _ c) is true. So ab # 0 and c'd 0. Now in any

case

ab = abcd v abc'd v abcd' v abc'd (34)

and

c'd = abc'd v a'bc'd v ab'c'd v a'b'c'd (35)

Note that in these expansions, only (abc'd) is common to both. The conjunction of any other

pair of propositions is 0. Thus any assignment of non-negative probabilities to these seven

propositions whose sum is 1 determines a probability measure P on the subalgebra

generated by a,b,c and d for which P(b) : 0 ? P(d). It will be shown that all but abcd and

a'bc'd must be 0 and that the latter must not be 0. Suppose first that the common

proposition abc'd # 0. Then assign it probability weight 1. In this case P(b) _ P(ab) _

P(abc'd) = 1 but P(cd) = P(d) - P(c'd) = 1 - 1 = 0. So P(alb) = 1 but P(cid) = 0, which

is a contradiction. Next suppose either abcd' or abc'd' is not 0. In this case assign it

probability weight 1/2 and assign c'd probability 1/2. Therefore P(ab) 1/2 but P(cd)

= P(d) - P(c'd) = 1/2 - 1/2 = 0. So P(alb) - 1/2 but P(cjd) = 0, which is again a

contradiction. Therefore 0 ab = abcd. So ab cd. Next suppose either ab'c'd or a'b'c'd is

not 0. In that case assign it probability weight 1/2 and assign abcd probability 1/2. Then

P(ab) = 1/2 and P(b) = 1/2 but P(cd) = P(d) - P(c'd) = 1 - 1/2 = 1/2. So P(alb) = 1
but P(cld) = 1/2, again a contradiction. Therefore 0 # c'd = a'bc'd. So c'd _< a'b. This

completes the proof.

In view of the preceding, since (p)(qlp) < (r)(sir) is equivalent to pq _< sr, having the

latter relation together with (qlp) <c (sir), which is equivalent to s'r < q'p, yields that

P(qlp) < P(slr). If instead of (qlp) <c (sir), one has (qlp) <,v (sir), then again one has

(qlp) <m (sir), and so again P(qlp) < P(slr) as well as p < r.

The following two theorems and the corollary relate conjunctive and conditional

implication:

Theorem 13: If (qlp) <A (sir) then (q v p') < (s v r'). That is, conjunctive implication
implies conditional implication.
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Corollary to Theorem 13: If (qlp) < (sir) then P(qlp) - P(q v p') -' P(s v r').

Theorem 14: If (q v p') <_ (s v r') and r < p then (qlp) -< (sir). That is, with (r -- p)

conditional implication implies conjunctive implication.

Proofs of Theorems 13 and 14: If conjunctive implication holds then r < p and qr

sr. So p'-< r'. Soq v p' = qp v p' ! srv p'_ !srv r'= sv r'. Therefore, q v p' - sv r',

which completes the proof of Theorem 13. The corollary is obvious. For Theorem 14, it
(qv p')_<(svr') and r_<p then qp <_ qpvp' = qvp' 5 svr' = srvr'. Soqp -

sr v r'. Therefore (qip) 5,, (sir) by Theorem 8.

While conditional implication is weaker than both conjunctive implication and material

implication, conditional implication is not weaker than disjunctive implication. Nor is

disjunctive implication weaker than conditiona! implication. Concerning the relationship

between disjunctive and conditional implication there are the following theorems:

Theorem 15: If (q~p) -<c (sir) and p _ r then (qJp) -<v (sir).

Theorem 16: If (qlp) < (sir) and p' s v r' then (qlp) <c (sir).

Proofs of Theorems 15 and 16: For Theorem 15, suppose (q v p') < (s v r') and

p < r. So (q v p')p < sv r')p. That is, qp < spv r'p = sp v 0 = sp. So qp _< sp.

Therefore (qlp) <!v (sir). For Theorem 16, suppose (qlp) <v (sir) and p' <_ s v r'.

Therefore q v p' = qpv p' < spv p' < sv p' = sv (sv r') = sv r'. That is, qv p'

< s v r'. So (qlp) <c (sir). This completes the proof of Theorem 16.

Entailment in L/L: And so it seems that there are different entailments for different

situations and most do not impose monotonicity of conditional probability.

From the preceding results it is easy to see the following relationships:

If (qlp) <m (sir) and r < p then (qIP) <, (sir) (36)

If (qlp) <^ (sir) and qp < sr then (qip) <m (sir) and r <_ p

If (qlp) <m (sir) and p < r then (qip) <, (sir) (37)

If (qlp) <v (sir) and (qlp) -<c (sir) then qip) <m (sir) and p < r

If (qip) -< (sir) and p < r then (qlp) -<, (sir) and p = r (38)

If (qlp) <v (sir) and r < p then (qip) <,,, (sir) and p = r

If (qlp) <m (sir) then (qlp) <c (sir) (39)

If (qlp) -<c (sir) and qp < sr then (qip) <m (sir)
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It is interesting to note that A^, and em g ne rate lattices in L./L. but - i s riot a parl al

ordering because it fails to be antisymmetric.

Nevertheless, -c is a quasi-ordering ki2 51, p. 4). Of course by equating all condilionals

for which -c holds in both directions, a partial ordering arises. However this entails

making (qlp) and (q v p') equivalent, which is not desirable except when both are certain.

The following theorem gives three ways to express the fact that two conditional propositions

are equivaleit.

Theorem 17: (qlp) = (sir) if and only if any one of the following are true:

(qlP) !-A (sir) and (sir) <^ (qlp),

(qlp) --- (sir) and (sir) <-,v (qlp),

(qlP) <-m (sir) and (sir) -m (qlP)-

Proof of Theorem 17: Clearly, if both (qlP) <, (sir) and (sir) <^ (qlP) then r _ p and

qr_<sr, andp randsp_<qp. Sop= randqp_<sr, andsr_<qp. Sop=randqp= sr. So

(qlp) = (sir). The converse is also easy. Similarly for -<,. Next, if both (qlp)' v (sir) =

(1 I p v r) and (sir)' v (qlp) = (1 I p v r) then using the Corollary to Theorem 11, qp <

sr, sr<_qp, s'r q'pandq'p s'r. Soqp=srand s'r- q'p. So r=srv s'r =qpv q'p = p.

Therefore (qlp) = (sir). Conversely, if (qlp) = (sir), then qp = sr and p = r. So both qp

< sr and sr _ qp. Therefore, s'r = s'(q v q')r = s'qr v s'q'r = s'qp v s'q'p = s'(sr) v s'q'p

, 0 v s'q'p q'p. So s'r < q'p. By symmetry, q'p <_ s'r. So s'r = q'p. This completes the

proof.

Theorem 18: The conditional closure L/L is a lattice under the partial ordering <,

where the least upper bound (LUB) and greatest lower bound (GLB) are given by

LUB^ (qlp,slr) = (q v s) I (pr) = (qp v sr) I (pr),

GLB^ (qlp,slr) = [(q v p')(s v r')] I (p v r) = (qlP) A (sir).

Proof of Theorem 18: Firstly, (q si)pr) is an upper bound of (qlp) because pr !< p

and q(pr) _< (q v s)pr, using the Corollary to Theorem 8. By symmetry (q v s)i(pr) is

also an upper bound of (sir). Now if (t1u) is any upper bound of both (qip) and (sir) then

both u p and u _ r. So u _ pr. By the Corollary, both qu _ tu and su tu. Therefore

(q v s)u = qu v su !.< tuv su < tuv tu = tu. ]hus(q v s Iu) <_^ (flu). But(q v s ipr)

_<^ (q v s I u). So by transitivity of <_^, (q v s I pr) SA^ (flu). Therefore (q v s 1 pr) is

the LUB of (qlp) and (sir).
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To show that (qlp) A (sir) = [(q v p')(s v r')] I (p v r) is the GLB of (qlp) arid (s r),

first note that both p _ p v r and r _ p v r. Furthermore, (q v p')(s v r')p - (qp v 0)(s

v r') = qp(s v r') < qp. Similarly, (q v p')(s v r')r = (q v p')(sr v 0) - sr.

Therefore (q v p')(s v r') I (p v r) is a lower bound for (qlp) and (sir). Now if (11u) is

any lower bound of (qlp) and (sir) then both p < u and r _ u, and so (p v r) - u.

Furthermore, since both tp < qp and r < sr, then both t < q v p' and t sv r'. This

follows from t = tp v lp' _< qp v p' _< qpv p' = q v p' and t = trv tr' - sr v tr'

_ sr v r' = s v r'. Therefore, t < (q v p')(s v r'). Thus (tlu) -̂  (tI p v r) <.

(q v p')(s v r') I (p v r) because (p v r) < u and (p v r)t _ (p v r)(q v p')(s v r').

This completes the proof of Theorem 18.

Theorem 19: L./. is a lattice under the partial ordering <v where the LUBv and GLBV are

given by

LUBv (qlp,slr) = (qlp) v (sir) = (qp v sr) I (p \ r),

GLBV (qlp,slr) = (qslpr).

Proof of Theorem 19: (qslpr) is a lower bound of (qlp) and (sir) because pr < p arid

pr _< r, and because (qs)(pr) qp and (qs)(pr) _ sr. Now if (tlu) is any lower bound of

(qlp) and (sir), then u _ p, u < r, tu < qp and tu _ sr. Therefore (tlu) -<v (qslpr) because

u _ pr and tu _ (qp)(sr). This completes the GLB part of the proof. (qp v sr p v r) is an

upper bound of (qlp) and (sir) because p p v r and r p v r, and because qp -

(qp v sr)(p v r) = qp v sr, and similarly, sr < qp v sr. Now if (tlu) is any upper bound

of (qlp) and (sir), then p _< u, r _< u, qp _ tu and sr _ tu. Therefore (qp v sr i p ' r)

(Ilu) because p v r _< u and (qp v sr)(p v r) = qp v sr tu. This completes the proof.

While disjunctive implication establishes a full lattice in LIL, it doesn't appear to be

universally appropriate for purposes of enbiqlment. For instqnce consider the two

conditionals (PIP) and (pll) where p 1. Then clearly (PIP) 5v (pll). But (pip) is

certain or undefined whereas (pll) is just p, and so is uncertain and possibly improbable

but it is wholly defined. Nevertheless, -, is appropriate in some circumstances.

Theorem 20: Material implication (<im) establishes a partial ordering on Lit.

Proof of Theorem 20: (qlp) :m (qlp) since (qlp) v (qlP)' = (qlp) v (qlp) = (lip) =

(1 I p v p). So <m is reflexive. If (qlp) 5m (sir) and (sir) <m (qlp) then qp _ sr and

qv p'!_sv r',srqpandsv r'_<qv p'. So qp= srandqv p'=sv r'. Soqp= srand

q'p = s'r. So q = qp v qp' = sr v s'r = r. Therefore (qlp) = (sir). So -m is
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antisymmetric. Next for transitivity: If qp _ sr and sr <: tu, and q v p' < s v r' and s v r'

< I v u', then qp _ tu and q v p' _ 1 v u'. So (qlp) <m (flu). So -<m is transitive.

Theorem 21: L/L is a lattice under the partial ordering <m, where the LUBm and GLBm

are given by

LUBm (qlp,slr) = (qp v sr) I (qp v sr v pr),

GLBm (qlp,slr) = (qpsr) I (qpsr ., pq' v rs').

Proof of Theorem 21: Denoting (qp v sr) I (qp v sr v pr) by (flu), it is clear that

(qlp) -<m (tflu) and (sir) m (tlu) since firstly, qp _< qp v sr = tu and similarly sr _< tu,

and furthermore q v p' = qpv p' <_ qpv srv p'v r' = qpv srv (pr)' = (qpv sr) v

(qp v sr)'(pr)' = (qp v sr) v [(qp v sr) v pr]' = t v u'; so q v p' _ t v u' and similarly

s v r' _ t v u'. Thus (flu) is an upper bound of both (qlp) and (sir). Now if (xly) is any

upper bound of both (qlp) and (sir) it must be shown that (xly) is also an upper bound of

(flu). Since (xly) is an upper bound of (qlp), qp -< xy and qp v p' _< xy v y'. Similarly

sr _ xy and sr v r' < xy v y'. Therefore tu = qp v sr _ xy. Furthermore, (qp v p') v

(sr v r') _ xy v y'. But the left side of this latter inequality is (qp v sr) v p' v r' =

(qp v sr) v (pr)' = (qp v sr) v (qp v sr)'(pr)' = (qp v sr) v (qp v sr v pr)' = t v u'.

So t v u' < xy v y'. Therefore (flu) m (xly). Thus (flu) = LUBm (qlp,slr).

Next, denoting (qpsr I qpsr v pq' v rs') by (flu), it is clear that (tlu) is a lower bound of

both (qlp) and (sir) because tu = qpsr _ qp and similarly tu _ sr, and furthermore because

tu v u' = qpsr v (qpsr v pq' v rs')' = qpsr v (qpsr)'(pq' v rs')' = qpsr v (pq' v rs')' =

qpsr v (q v p')(s v r') _< q v (q v p') = q v p' = qp v p'; and similarly tu v u' _ sr v r'.

Now if (xly) is any lower bound of both (qlp) and (sir), then xy 5 qp, xy v y' _ qp v p',

xy _ sr and xy v y' _< sr v r'. So xy _ (qp)(sr) = tu. Furthermore, xy v y' _

(qp v p')(sr v r') = (q v p')(s v r') and tu v u' = qpsr v (qpsr v pq' v rs')' =

qpsr v (qpsr)'(pq' v rs')' = qpsr v (q v p')(s v r'). So xy v y' _ _ tu v u'. Therefore

(xly) -<m (flu). Thus (flu) = GLBm (qlp,slr). This completes the proof of Theorem 21.

The LUBm and GLBm of material implication turn out to be the very operations of

disjunction and conjunction derived by I. R. Goodman and H. T. Nguyen [22] by different

methods and with somewhat different goals. While these operations have their application,

they do not appear to be appropriate for purposes of general probability logic. For

instance, consider the experiment of rolling a single die once. The compound proposition "if

the roll is even then it will be a six or if the roll is odd it will be a five" reduces by the

Goodman/Nguyen operations to "if the roll is five or six then it will be five or six", which,

of course, is certain and cr' has conditional probability 1. In contrast, according to the
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operations of Theorem 2, this compound conditional reduces to "the roll will be five or six"

and has probability 2/6 or 1/3, which corresponds nicely with intuition. See also H.

Prade and D. Dubois [20] concerning a comparison of these operations.

As mentioned earlier, still another way to express "p entails q" is to say "q is in the

equivalence class (sum ideal, filter class) generated by p". In symbols this is q E <p>.

Now in a Boolean algebra this relation can be expressed in several equivalent ways

including qp = p, q v p = q, q v p' = 1, and (qlp) = (lip) corresponding to conjunctive,

disjunctive, material and conditional implication respectively. However, as has been

shown above, these forms are not equivalent in the conditional closure L/L of a Boolean

algebra L.

The statement "(qlp) entails (sir)", when extended to conditionals, then becomes "(sir) is

in the equivalence class of conditionals generated by (qlp)". The trouble here is that before

an entailment relation is chosen it is not immediately clear what the meaning is of "the

equivalence class of conditionals in L/L generated by (qlp)". To clarify this matter there

is the following:

Definition 12: The equivalence class <qlp> of conditional propositions in L/L generated

by the conditional proposition (qlp) is

<qlp> = {(sir): (qlp) <c (sir)}.

Note that this is equivalent to <qlp> = {(sir): q v p' < s v r'}. The equivalence class <qlp>

generated by (qlp) is the set of all conditional propositions (sir) which are true given

(qlp). That is,

(sir) e <qlp> if and only if [(slr)l(qlp)] = [(1lr)l(qlp)J, (40)

where the right hand side is just another way of writing (qlp) <c (sir).

Note that it follows from Definition 12 that the conditionals (qlp) and (01pq') and the

simple proposition (q v p'), which is equal to (q v p' i 1), all generate the same

equivalence class in L/L, namely <q v p'>. If this seems strange recall that these

conditionals are equivalent only when they are wholly true, i.e. certain, not when they are

merely possible, i.e., having a non-zero probability.

In view of all the foregoing it appears that entailment of conditionals by conditionals is

fairly well described in L/L by conditional implication (<c) even though the lack of anti-

symmetry means that conditional implication in both directions is not the same as
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equivalence of two conditionals. As mentioned previously, L/L is quasi-ordered by <c

because <c is reflective and transitive.

Since conjunctive implication (<A) and material implication (<m) individually imply

conditional implication, these are stronger forms of entailment than conditional

implication. Different circumstances will dictate which kind of implication to use.

To end this section on the recurring issue of non-monotonicity, consider a conditional (qlp)

and its contrapositive (p'lq'). As pointed out by the author in [3], pp. 221-2, these two

conditionals are equivalent when either is wholly true but otherwise they don't even have

the same probability: It is easy to show that if p < q then q' < p' and conversely.

Furthermore a conditional (qlp) conditionally implies its contrapositive (p'lq'):

Theorem 22: (qlp) -<c (p'lq')

Proof of Theorem 22: (p'lq') I (qlp) = (p' I q'(q v p')) = (p' I q'p') = (1 I q'p') =

(1 I q'(q v p')) = (llq') I (qlp). So by definition, (qlp) <c (p'lq').

In addition, P(qlp) = P(p'iq') if either is 1. But the conditional probability of a conditional

is less than or equal to the conditional probability of its contrapositive if and only if either

the corresponding premises or conclusions are so ordered in probability. To make this

precise there is the following:

Theorem 23: Suppose P(p) :P 0 :P P(q'). Then P(qlp) = 1 if and only if P(p'lq')

1. Otherwise, P(qlp) <  P(p'Iq') if and only if P(p) < P(q') if and only if P(q) < P(p').

Proof of Theorem 23: In [3], p.222, it is shown that

P(p'iq') = P(qlp) + [1 P(p)/P(q')] [1 - P(qlp)] (41)

Clearly, if P(qlp) = 1 then so is P(p'lq') = 1. By symmetry the converse is also true.

Furthermore, P(qlp) < P(p'Iq') if and only if the product of the brackets is non-negative.

Since [1 - P(qlp)] > 0, this is true if and only if [1 - P(p)/P(q')] > 0, i.e., if and only if

P(p) < P(q'). So P(q) < P(p') using P(p) = 1 - P(p') and P(q') = 1 - P(q).

It is important to realize that in any model in which (qlp) is not false, i.e. not both p true

and q false, it is also true that (p'lq') is not false, i.e. not both q' is true and p' is false.

However, the fact that these conditionals may be undefined (have truth value U) allows

their conditional probabilities to be ordered in either way.

The combining of logic with probability is fraught with the danger of contaminating

absolute (certain) information with partially true information, with absolute nonsense
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being the result. For instance, it is known with certainty (by definition) that "if an animal

is a penguin then it is a bird" and it is also known with very high probability that "if an

randomly chosen animal is a bird then it will fly". Therefore one might conclude with high

probability that "if an animal is a penguin then it will fly." Such examples should give

pause to those who would cavalierly fuse data with suboptimal techniques.
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